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Back to the future!
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Who provides flexibility, security

and reliability today?
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Is it a far future?

Figure 5 5A frequency compared to Victoria during event
Frasguency - SA ve WIC - 2B/9/16
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Who can help to solve
flexibility and security problems?
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Flexibility in low-carbon power systems
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Still worried about delivering
a low-carbon energy system?
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How much and what storage do we need?
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F. Cebulla, et al., “"How much electrical energy storage do we need?”, Journal of Cleaner Production, Volume 181, 20 April 2018, 449-459
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The bigger picture:
Sector coupling and multi-energy systems

Energy Flow Chart 2017
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Electrification:
the magnitude of the problem...
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Source: Courtesy of Imperial College. For illustrative purposes only and based on actual half-hourly electricity demand from
MNational Grid and an estimate of half hourly heat demand.
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What are Multi-Energy Systems?

“Systems in which electricity, heat, cooling, fuels,
transport, and so on optimally interact with each other at
various levels - for instance, within a district, city or region’

(4

i
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city/region

P.Mancarella, “Multi-energy
systems: an overview of

models and evaluation N \
concepts”, Energy, Vol. 65, N APt NG
2014, 1-17, Invited paper
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What is flexibility in
MES terms?

= Can other energy systems/vectors provide flexibility to the
electrical power system (= ability to provide supply and
demand balance “quickly”)?

= Can (lack of) flexibility in other energy systems constrain the
electrical power system?

G. Chicco et al., “Flexibility from distributed multienergy systems”, Proceedings of the IEEE, 2020
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So, instead of this...
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... could we do this?
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Who will provide flexibility tomorrow?
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Flexibility from DMES: “multi-energy node” model
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“The set of all feasible deviations in the flows of an energy vector from a
given operating point, subject to multi-energy node constraints”

G. Chicco et al., “Flexibility from distributed multienergy systems”, Proceedings of the IEEE, 2020

© 2021 P. Mancarella MES Flexibility and Resilience, SDEWES 21



Aggregation of multi-energy device in MES
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G. Chicco et al., “Flexibility from distributed multienergy systems”, Proceedings of the IEEE, 2020
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Multi-energy flexibility from
Input energy vector arbitrage
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External energy vector arbitrage

T. Capuder and P. Mancarella, “Techno-economic and environmental modelling and optimization of flexible distributed multi-
generation options,” Energy, vol. 71, pp. 516-533, 2014
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Example operation of hybrid heating technologies:
Integrated air-source heat pump and gas boiler

" Integrated air-source heat pump (ASHP) and gas boiler responds to
power system needs — using gas boiler higher electricity price times
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S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling and Assessment, with Applications to the Great Britain System.
Part II: Transmission Network Analysis and Low Carbon Technology and Resilience Case Studies”, Energy, 2019

S. Clegg and P. Mancarella, “Integrated Electricity-Heat-Gas Modelling and Assessment, with Applications to the Great Britain System.
Part I: High-Resolution Spatial and Temporal Heat Demand Modelling”, Energy, 2019
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Output energy vector arbitrage:
Power-to-heat
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Heat load and thermal storage can be seen as an electricity sink and
source of flexibility, e.g., for excess renewable electricity

T. Capuder and P. Mancarella, “Techno-economic and environmental modelling and optimization of flexible distributed multi-
generation options,” Energy, vol. 71, pp. 516-533, 2014
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Virtual storage in buildings
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N. Good, et al., “High resolution modelling of multi-energy domestic demand profiles”, Applied Energy, vol. 137, pp. 193-210, 1
January 2015
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Comfort-to-power arbitrage via
“virtual battery” flexibility
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N. Good, et al., “"Optimization under uncertainty of thermal storage based flexible demand response with quantification of residential
users’ discomfort,” IEEE Trans. on Smart Grid, vol. 6, no. 5, pp. 2333-2342, 2015

L. Zhang, et al., “Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump
aggregations,” Applied Energy, vol. 233-234, pp. 709-723, 2019
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The big picture down under

Australian Energy Flows 2016-17 (Petajoules)
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Planning BIG:
The Australia’s National Hydrogen Strategy
and green hydrogen potential

Potential for green hydrogen production with consideration for access to
water, ports, pipeline easements, and electricity infrastructure
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Source: COAG Energy Council, Australia’s National Hydrogen Strategy, November 2019
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Power-to-gas with Green H,

*

Green H2 production in RES e
curtailment areas

S. Clegg, P. Mancarella, “Integrated modelling and assessment of the operational impact of power-to-gas (P2G) on vee
electrical and gas transmission networks”, IEEE Transactions on Sustainable Energy 6 (4), pp.1234—1244, 2015 CRe
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Green H, production model
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But not all of this hydrogen can be used for network injection!

I. Saedi, S. Mhanna, P. Mancarella, “Integrated Electricity and Gas System Modelling with Hydrogen
Injections and Gas Composition Tracking”, Applied Energy, August 2021 CRC
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Integrated electricity-gas-hydrogen
network model
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S. Mhanna, I. Saedi, P. Mancarella, “Iterative LP-based Methods for the Multiperiod Optimal
Electricity and Gas Flow Problem”, IEEE Transactions on Power Systems, June 2021

I. Saedi, S. Mhanna, P. Mancarella, “Integrated Electricity and Gas System Modelling with Hydrogen
Injections and Gas Composition Tracking”, Applied Energy, accepted for publication, August 2021
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Power-to-gas with seasonal storage in the gas network
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S. Clegg, P. Mancarella, “Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon
power systems”, IET Generation, Transmission & Distribution, 10 (3), pp.566—-575, 2015
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How to plan for the black swan?
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Planning for Resilience:
The Resilience Trilemma

Make the network more
Smarter? responsive (e.g. faster

restoration), self-

adaptive, resourceful,

etc.
Resilience
Enhancement
Upgrade Build new
existing Bi = infrastructure,
infrastructure, Igger: e.g. transmission
asset life lines,

extension, etc. substations, etc.

M. Panteli and P. Mancarella, The Grid: Stronger, Bigger, Smarter? Presenting a conceptual framework of
power system resilience, IEEE Power and Energy Magazine, May/June 2015
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Flexibility and resilience from
Multi-energy Microgrids

(a) Normal operation (b) Contingency (c) Emergency
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E. A. Martinez Cesena, N. Good, A. L. A. Syrri, P. Mancarella, “Techno-economic and business case assessment of multi-energy
microgrids with co-optimization of energy, reserve and reliability services,” Applied Energy, 2017

T. Lagos, et al., “Identifying Optimal Portfolios of Resilient Network Investments Against Natural Hazards, With Applications to
Earthquakes”, IEEE Transactions on Power Systems, 2020
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Not only batteries:
Fast frequency response from electrolysers

®" FFR capabillities of large-scale electrolyzers can support
frequency resilience after system split
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M. Ghazavi, A. Jalali, and P. Mancarella, “Fast frequency response from utility scale hydrogen electrolysers”, IEEE Transactions on Sustainable
Energy, March 2021
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Next: Unlocking multi-energy flexibility via
optimization, control, and integrated energy markets

& & & E. Dall'Anese, et al.,
“Unlocking Flexibility:
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Next: Unlocking multi-energy flexibility via
optimization, control, and integrated energy markets

Min f(water) + g(power) + h(gas)
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Next: Unlocking multi-energy flexibility via
optimization, control, and integrated energy markets

Communication Links
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Flexibility-in-planning fully exploits
MES flexibility-in-operation

" The value of flexible operation and investment skews the
expected economic performance of the DMES
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E. A. Martinez Cesena, T. Capuder and P. Mancarella, “Flexible distributed multienergy generation system
expansion planning under uncertainty,” IEEE Transactions on Smart Grid, 2016
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Key remarks
=  Superior flexibility can be harnessed from multi-energy systems

=  Substantial grid flexibility can be unlocked at relatively low cost

from other energy vectors

= MES have a key role to enable local and system-level flexibility and
market participation in multiple commodities and grid services
— Electricity and heat, gas, hydrogen
— Frequency response, reactive support, etc.
— Resilience services

= Scalability of MES flexibility concepts (building, district, city, region,
country)

= Synergy between flexibility-in-operation and flexibility-in-

planning to hedge against investment uncertainty and risk

= Regulatory, market, and policy framework to create the right price

signals to optimally deploy flexibility across MES

© 2021 P. Mancarella MES Flexibility and Resilience, SDEWES 21



Back to the future

"Water will one day be employed as fuel, that hydrogen and
oxygen which constitute it, used singly or together, will furnish an
inexhaustible source of heat and light, of an intensity of which
coal Iis not capable.

Someday the coal-rooms of steamers and the tenders of
locomotives will, instead of coal, be stored with these two
condensed gases, which will burn in the furnaces with enormous
calorific power.”

Jules Verne, “The Mysterious Island”, 1874

"For the anxious, progress towards a hydrogen future is too
slow. But look back a few decades from now and history will
record the hydrogen industry as an overnight success”

Dr Alan Finkel, Chief Scientist of Australia, November 2019

Source: COAG Energy Council, Australia’s National Hydrogen Strategy, November 2019
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