

Untying the Knot: Explorations to Meet Climate and Sustainability Goals

Detlef van Vuuren

International promises to do better...

Convention on Biological Diversity Aichi targets: Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society and reduce the direct pressures on biodiversity and promote sustainable use...

Paris-agreement

The universal agreement's main aim is to keep a global temperature rise this century well below 2 degrees Celsius and to drive efforts to limit the temperature increase even further to 1.5 degrees Celsius above pre-industrial levels

Circular Economy Action Plan The European Green Deal

The Sustainable Development Goals (SDGs),

International promises to do better...

80

Aichi targets: Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society and reduce the direct pressures on biodiversity and promote sustainable use...

Paris-agreement

The universal agreement's main aim is to keep a global temperature rise this century well below 2 degrees Celsius and to drive efforts to limit the temperature increase even further to 1.5 degrees Celsius above pre-industrial levels

Circular Economy Action Plan The European Green Deal Gt CO₂-eq.

1980 2000 2020 2040 2060 2080 2100

Media Release: Nature's Dangerous Decline 'Unprecedented'; Species Extinction Rates 'Accelerating'

The Sustainable Development Goals (SDGs),

International promises to do better...

Paris-agreement

The universal agreement's main aim is to keep a global temperature rise this century well below 2 degrees Celsius and to drive efforts to limit the temperature increase even further to 1.5 degrees Celsius above pre-industrial levels

Circular Economy Action Plan The European Green Deal Aichi targets: Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society and reduce the direct pressures on biodiversity and promote sustainable use...

Our common quest should be: What is needed to achieve the goals; how can we bend the trend?

The Sustainable Development Goals (SDGs),

International promises to do better...

Paris-agreement

The universal agreement's main aim is to keep a global temperature rise this century well below 2 degrees Celsius and to drive efforts to limit the temperature increase even further to 1.5 degrees Celsius above pre-industrial levels

Circular Economy Action Plan The European Green Deal Aichi targets: Address the underlying causes of biodiversity loss by mainstreaming biodiversity across government and society and reduce the direct pressures on biodiversity and promote sustainable use...

How will the future evolve?

The Sustainable Development Goals (SDGs),

How will the future evolve?

How will the future evolve?

Planbureau voor de Leefomgeving

12 december 2021

Describe

evolution of

future systems

Planbureau voor de Leefomgeving

Model-based **scenarios**

Scenarios:

- Combination of narratives and modelling
- Modelling where there is enough knowledge to define quantitative relationships
- Narratives where there is need for complexibity and flexibility

Available tools

Content of rest of presentation

- Look into area of climate research to see how scenarios can be used
- See how this can be further expanded
- Draw some conclusions

Climate

Model-based **scenarios**

Socio-economic conditions

Model-based **scenarios**

Shared Socio-economic Pathways: 5 possible stories about the future

▲ SSP5: Fossil fuel-ed development

- Rapid growth, free trade
- High technology development,
- Environment and social goals not a priority: adaptive, technology-fix
- Focus on economic growth

SSP1:Green growth

- Global cooperation
- Rapid technology dev.
- Strong env. policy
- Low population growth
- Low inequity
- Focus on renewables and
- efficiencv
- **Dietary shifts**
- Forest protection

Markets Clash of civilisations first

SSP2:

Middle of the Road

UN world

AS USUAL

Have's and have not's

SSP3: Regional rivalry

- Competition among regions
- Low technology development
- Environment and social goals not a priority
- Focus on domestic resources
- High population growth
- Slow economic growth dev. countries

SSP4: Inequality

- Inequality across and • within regions
- Low technology ٠ development
- Environment priority for ٠ those that can afford
 - Limited trade

Interaction demand / supply

Allocation based on prices and preferences

Detailed representation of processes (technology development, depletion) and sectors (e.g. transport)

Emissions → **temperature**

pbl.nl

Emissions → **temperature**

Negative emissions:

- Reforestation
- Bio-energy with CCS
- Direct air capture
- Nature-based solution (e.g. soil carbon)

- ...

Could help, but

- Temporary overshoot temperature target
- Possible negative impacts on land use
- Limit potential

Flexibility in pathways

Emerging consensus: net zero ~2050

- Distribution within time
- Non-CO₂

Net zero target is less certain – but sets a clear point at the horizon

Current policy

Global emissions greenhouse gas

Non-CO₂
 Process emissions
 Buildings
 Industry
 Transport
 Energy sector
 Land use change
 Negative emissions

Current policy

Global emissions greenhouse gas

Non-CO₂
 Process emissions
 Buildings
 Industry
 Transport
 Energy sector
 Land use change
 Negative emissions

12 december 2021

Current policy

Global emissions greenhouse gas

Non-CO₂
Process emissions
Buildings
Industry
Transport
Energy sector
Land use change
Negative emissions

Global energy use

Renewables Bio-energy Fossil with CCS Fossil without CCS Nuclear

Current policy

Global emissions greenhouse gas

Non-CO₂
Process emissions
Buildings
Industry
Transport
Energy sector
Land use change
Negative emissions

Global emissions greenhouse gas

Global energy use

Global energy use

Renewables Bio-energy

Fossil with CCSFossil without CCS

Nuclear

Global emissions greenhouse gas

12 december 2021

Global emissions greenhouse gas

Renewables
Bio-energy
Fossil with CCS
Fossil without CCS
Nuclear

12 december 2021

Global emissions greenhouse gas

Nuclear

Going beyond climate

Global material extraction

Source: IRP – Global Resource Outlook 2019

rce: Van Vuuren et al. (2019). Nature Sustainability

Source: Van Vuuren et al. (2019). Nature Sustainability

da

Reduce water

Scenarios

scarcity

Protect

biodiversity

Eridicate

hunger

Meet climate

goals

Planbureau voor de Leefomgeving

	JKO	∇	CSA
0	EUR	⊠	SAS
Δ	NAM	*	SEA
+	MEN	₽	SSA
×	RCA	\bullet	WLD
\diamond	CHN		

12 december 2021

Doelman et al., in review

	Scenarios					
Measures	WATER	LAND	FOOD	CLIMATE		
Environmental flow requirements	Limit water extraction,					
Biodiversity protection		Increase in protection				
Fertilizer efficiency	++	++		+		
Diet change			Willett diet			
Food waste			reduction in food waste			
GHG price				Carbon price		

Model		MAgPIE						IMAG	GE	
Scenario	WATER	LAND	FOOD	CLIMATE	TOTAL	WATER	LAND	FOOD	CLIMATE	TOTAL
Water										
Withdrawal										
Irrigation	-26%	+10%	-24%	+31%	-25%	-28%	0%	-3%	+5%	-26%
Natural Land								1		
Area	0%	+2%	+4%	+2%	+6%	-1%	+4%	+8%	+2%	+8%
Nitrogen										
Surplus										
Agriculture	-27%	-27%	-35%	-8%	-61%	-30%	-32%	-23%	-24%	-51%
Food Price	+1%	+1%	-18%	+7%	-11%	+9%	+20%	-46%	+11%	-34%
AFOLU										
Emissions	-3%	-14%	-58%	-43%	-83%	0%	-27%	-45%	-30%	-53%

Planbureau voo

ATER AND DOD IMATE

DTAL

ATER AND DOD IMATE DTAL

♦ CHN

https://eartharxiv.org/repository/view/2386/

Defining a Sustainable Development Target Space for 2030 and 2050

Detlef P. van Vuuren^{•1,2}, Caroline Zimm³, Sebastian Busch⁴, Elmar Kriegler⁵, Julia Leininger⁶, Dirk Messner⁷, Nebojsa Nakicenovic³, Johan Rockstrom^{5,8}, Keywan Riahi^{3,9}, Frank Sperling^{3,10}, Valentina Bosetti¹¹, Sarah Cornell⁸, Owen Gaffney^{5,8}, Paul L. Lucas¹, Alexander Popp⁵, Constantin Ruhe^{6,12}, Armin von Schiller⁶, Jörn O. Schmidt^{13, 14}, Bjoern Soergel⁵

	Indicators			
SDG1				
SDG2				
SDG3				
SDG4				
SDG5				
SDG6				
SDG7				
SDG7				
SDG8				

12 december 2021

b SDG interactions and their representation in IAMs

Planbureau voor de Leefomgeving

https://eartharxiv.org/repository/view/2386/

Defining a Sustainable Development Target Space for 2030 and 2050

Detlef P. van Vuuren^{*1,2}, Caroline Zimm³, Sebastian Busch⁴, Elmar Kriegler⁵, Julia Leininger⁶, Dirk Messner⁷, Nebojsa Nakicenovic³, Johan Rockstrom^{5,8}, Keywan Riahi^{3,9}, Frank Sperling^{3,10}, Valentina Bosetti¹¹, Sarah Cornell⁸, Owen Gaffney^{5,8}, Paul L. Lucas¹, Alexander Popp⁵, Constantin Ruhe^{6,12}, Armin von Schiller⁶, Jörn O. Schmidt^{13, 14}, Bjoern Soergel⁵

	Indicators		
SDG1			
SDG2			
SDG3			
SDG4			
SDG5			
SDG6			
SDG7			
SDG7			
SDG8			
			56

12 december 2021

Van Soest et al., 2019

b SDG interactions and their representation in IAMs

Planbureau voor de Leefomgeving

https://eartharxiv.org/repository/view/2386/

Defining a Sustainable Development Target Space for 2030 and 2050

Detlef P. van Vuuren^{•1,2}, Caroline Zimm³, Sebastian Busch⁴, Elmar Kriegler⁵, Julia Leininger⁶, Dirk Messner⁷, Nebojsa Nakicenovic³, Johan Rockstrom^{5,8}, Keywan Riahi^{3,9}, Frank Sperling^{3,10}, Valentina Bosetti¹¹, Sarah Cornell⁸, Owen Gaffney^{5,8}, Paul L. Lucas¹, Alexander Popp⁵, Constantin Ruhe^{6,12}, Armin von Schiller⁶, Jörn O. Schmidt^{13, 14}, Bjoern Soergel⁵

	Indicato	rs	
SDG1			
SDG2			
SDG3			
SDG4			
SDG5			
SDG6			
SDG7			
SDG7			
SDG8			
			57

Van Soest et al., 2019

Untying the knot

- Lot of experience on single issue scenario work regarding solutions...
- But knowledge on the connections is still developing
- Common knowledge base
 - Linking different types of research
 - Use of common scenarios
 - Learning across scales
 - Social science / natural science
 - Different research foci (e.g. CE, nexus, climate, biodiversity)

12 december 2021

