mobile

"History teaches us that men and nations behave wisely once they have exhausted all other alternatives"

Abba Eban

"You never change things by fighting the existing reality. To change something, build a new model that makes the existing model obsolete."

Buckminster Fuller, philosopher, futurist and global thinker (1895 - 1983)

Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs."

The Report of the U.N. Brundtland Commission, Our Common Future, 1987

JOIN US IN DUBROVNIK!
Depending on the Covid-19 situation, the conference will be held in hybrid mode or full online mode.
Over 1000 abstracts received so far!

Invited lectures

The Essence of Geography in Energy Sciences

As renewable energy shares increase with decreasing costs, available land may be the next stop block for the development of sustainable energy systems. Energy planning is therefore increasingly a matter of spatial planning as well.

For more than 20 years, geographical information systems have been used to describe and model current and future energy systems. Energy data has been disaggregated to local geographical scales and made available to the research community on massive scale. A magnitude of studies addresses the space-dependent distribution of sustainable energy resources, captures the spatial spreading of energy needs and consumption, and analyses the access to energy infrastructures.

What is often missing, though, is the intricate link between location suitability, and the quantification of potentials and costs. The present paper suggests a generic approach to assess these main constraints of local sustainable energy options. For each geographical entity, suitability mapping identifies available land by environmental constraints or political preference; potentials are quantified and located by technical limitations; and location-specific costs are assessed for place- and logistics-dependent technologies. The paper introduces to the methods of such analysis, and presents examples from past and current research.

Prof. Bernd Möller
Europa Universität Flensburg
Flensburg, Germany



Prof. Dr. Bernd Möller studied energy engineering at Flensburg University of Applied Sciences. He worked as a research fellow at Aalborg University in Denmark, where he obtained a PhD in Energy Planning at the Department of Planning and Development. As a member of the Sustainable Energy Planning Research Group he gathered experience with energy systems analysis and later on specialized in spatial analysis and the use of geographical information systems in energy and environmental planning. He has been a board member of Samsoe Energy Academy in Denmark, on an island dedicated to 100% renewable energy supply. Prof. Dr. Bernd Möller is chair of the M.Eng. programme of Energy and Environmental Management at Europa Universität Flensburg, a programme with a 25 year history, dedicated to sustainable energy systems and management in developing countries. Main areas of research are renewable energy sources such as wind, solar and biomass and the geographical aspects of sustainable energy systems in terms of technology, economy and planning. This includes studies of resource availability of biomass, landscape impact of wind energy, continuous resource economic models of offshore wind energy, the connectivity to district heating as well as heat atlases of demand and supply for Denmark and Europe.

Status of Renewable Energy Systems in the World

This presentation examines the current status of renewables in the world. The presentation starts with some facts about climate change, global warming, and the effects of human activities, such as the burning of fossil fuels on the climate problem. It then outlines the status of renewables in the world, which includes their shares with respect to conventional fuel use for power and for electricity production alone, and their social dimension in terms of jobs created. Then the basic forms of renewables are examined in some detail, which includes solar thermal, both for low and high-temperature applications, photovoltaics, hydropower, onshore and offshore wind energy systems, and biomass/biofuels. In all these the basic technology is presented followed by the current status, the installed capacity in the last decade, which reveals their upward trend, as well as the prospects of the technology and some new research findings.

Prof. Soteris Kalogirou
Cyprus University of Technology
Limassol, Cyprus



Professor Soteris Kalogirou is at the Department of Mechanical Engineering and Materials Sciences and Engineering of the Cyprus University of Technology, Limassol, Cyprus. He is currently the Dean of the School of Engineering and Technology. In addition to his Ph.D., he holds the title of D.Sc. He is a Fellow of the European Academy of Sciences and Founding Member of the Cyprus Academy of Sciences, Letters and Arts. For more than 35 years, he is actively involved in research in the area of solar energy and particularly in flat plate and concentrating collectors, solar water heating, solar steam generating systems, desalination, photovoltaics, and absorption cooling. He has a large number of publications as books, book chapters, international scientific journals and refereed conference proceedings. He is Editor-in-Chief of Renewable Energy and Deputy Editor-in-Chief of Energy, and Editorial Board Member of another seventeen journals. He is the editor of the book Artificial Intelligence in Energy and Renewable Energy Systems, published by Nova Science Inc., co-editor of the book Soft Computing in Green and Renewable Energy Systems, published by Springer, editor of the book McEvoy’s Handbook of Photovoltaics, published by Academic Press of Elsevier and author of the books Solar Energy Engineering: Processes and Systems, and Thermal Solar Desalination: Methods and Systems, published by Academic Press of Elsevier. He is a member of World Renewable Energy Network (WREN), American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE), Institute of Refrigeration (IoR) and International Solar Energy Society (ISES).

Enabling Pathways towards Sustainable Urban System Scenarios for Effective Climate Mitigation

Urban areas were responsible for about 28.6 GtCO2eq of greenhouse gas emissions at the global level in 2020, including direct and indirect emissions from energy use as well as embodied emissions. With such an important share, capturing a turning point and rapid decrease in urban emissions at sufficient scale and pace is crucial for enabling pathways that are better aligned with the critically sensitive bounds of a 1.5°C global warming target. This lecture will first focus on urban emission scenarios that are constructed in the context of the SSP-RCP framework using data from over 10,000 urban areas as well as urban emission trends. The findings have significance for comparing urban emission scenarios that are able to reverse the drivers of urban emissions in a way that benefits from an urban advantage for accelerating climate mitigation. These include supporting the penetration of renewable energy in energy systems, integrating efficient urban energy infrastructure, and mobilizing sustainable behavioral change. Based on these scenarios, indices based on an urban identity that involves an integrated urban energy planning perspective are introduced to support the translatability of global targets to the local level. An original synthesis across multiple datasets is continued to obtain local urban emission scenarios for the top 10 urban areas in each of the main world regions plus South East Europe that is harmonized with parameters from the Global Human Settlement Layer. Connections across spatiotemporal dimensions are used to emphasize the need for diffusing effective urban climate mitigation action that takes into account the progress of pioneering urban areas for climate neutrality as well as climate positivity. The role of urban areas in integrating sectors for providing flexibility in 100% renewable energy scenarios is underlined as well as opportunities for further improving the SSP1-RCP1.9 scenario with a transition to renewable energy based, resource efficient and compact urban areas. The multi-dimensional feasibility of such options is put forth as well as the presence of tools to enable the vision for a SDEWES-Aware City for sustainable urban systems. Enabling the integration of energy, water and environment systems in urban areas is crucial for better safeguarding life-support systems for the well-being of the entire planet.

Prof. Şiir KILKIŞ
The Scientific and Technological Research Council of Turkey (TÜBİTAK)
Ankara, Turkey



Şiir KILKIŞ is alumna of KTH Royal Institute of Technology, School of Architecture and the Built Environment Faculty of Civil and Architectural Engineering, and Georgetown University, where she graduated magna cum laude as the gold medalist in Science, Technology, and International Affairs. She serves as a Lead Author in the Intergovernmental Panel on Climate Change Sixth Assessment Report with a focus on urban systems in Working Group III on Mitigation of Climate Change. She is a member of the Earth Commission Working Group on Translation and Methods, Steering Committee of the Future Earth Urban Knowledge Action Network, and the International Scientific Committee of the SDEWES Center. Based on her research work, she takes place among the world’s top 2% scientists in the areas of energy, environmental science, and emerging/strategic technologies. Her research accomplishments include the SDEWES Index benchmarking 120 cities, novel net-zero district concepts, and the Rational Exergy Management Model to curb CO₂ emissions. She is an editorial board member of The Journal of Sustainable Development of Energy, Water & Environment Systems and Smart Energy as well as Guest Editor in Energy Conversion and Management. As Associate Professor in Energy Systems Engineering, she lectures on sustainable development in the Earth System Science Program of METU and is Senior Researcher and Advisor to the President at The Scientific and Technological Research Council of Turkey.

Untying the Knot: Explorations to Meet Climate and Sustainability Goals

The world is facing several sustainable development challenges at the same time, including the challenges to deal with climate change, biodiversity loss, hunger and access to energy and safe drinking water. The challenges are linked: solutions for climate change can have consequences for biodiversity and the other way around. Many scenarios in the literature, for instance, to keep warming below 1.5 or 2oC include land-use-based mitigation options, including bio-energy, with possible consequences for water and land. In the presentation, we look into this default climate mitigation approach, emphasising nexus challenges and discussing how these are coupled to the SDGs. Alternative routes that can limit reliance on land use for mitigation, including rapid electrification of energy demand based on renewable energy and lifestyle change. Although there are also challenges involved, these pathways could alleviate some of the stresses on nexus issues while providing essential co-benefits. Finally, the lecture will conclude with some of the critical challenges in the integrated assessment of global change: 1) how to deal with feasibility issues beyond technical and economic issues and 2) how to link issues across the scale. Scenario analysis has an instrumental role in guiding ways of addressing nexus issues in the context of climate change mitigation and sustainability goals. Through this lecture, it will be possible to explore what is needed to meet the Paris Agreement to sustain our future.

Prof. Detlef van Vuuren
PBL Netherlands Environmental Assessment Agenc
Utrecht, Netherlands



Detlef van Vuuren is a Professor of Integrated Assessment of Global Environmental Change at Utrecht University’s Faculty of Geosciences and a senior researcher at PBL Netherlands Environmental Assessment Agency, where he leads the IMAGE integrated assessment modelling team. He has published more than 360 articles in peer-reviewed journals, including high profile journals such as Nature and Science. He is among seven people worldwide who are listed as “highly cited researchers” in three different disciplines simultaneously. Detlef van Vuuren’s work focuses on global sustainability issues. With his team, he develops models to explore future climate and environmental changes through scenarios (i.e. projections of the future). The use of models allows accounting for the interaction between the economy and climate, land use and other environmental parameters, across geographic scales and over time. Detlef van Vuuren is a member and board member of the Integrated Assessment Modelling Consortium (IAMC), the Earth Commission (as part of Future Earth) and the Global Carbon Project (GCP). He is deputy editor of the scientific journal Climatic Change (a leading interdisciplinary journal on climate change). He participates in the editorial boards of Earth System Dynamics and Global Environmental Change. Detlef van Vuuren had a coordinating role in developing the Representative Concentration Pathways (RCPs) and subsequent Shared Socioeconomic Pathways (SSPs), now used in the IPCC’s assessments. He led several international research projects, including the EU Funded PATHWAYS and COMMIT projects and participated in the scientific steering group of more than ten other European research projects. He participated as Coordinating Lead Author and Lead Author in more than 15 scientific assessments, such as the 5th and 6th Assessment Reports of IPCC, the Millennium Ecosystem Assessment, UNEP’s Global Environment Outlook, the International Assessment on Agricultural Science and Technology Development, and OECD Environmental Outlook.

Flexibility and resilience from multi-energy systems

The aim of this plenary lecture is to discuss the main concepts about provision of flexibility and resilience from the so-called multi-energy systems (MES) whereby electricity interacts with other energy vectors and sectors such as heating, cooling, transport, gas, hydrogen, etc. Specific use cases and applications, covering technical, commercial, and regulatory aspects, will refer to a number of recent projects in the UK, Europe and Australia. These include ongoing work with electricity and gas system operators, transmission and distribution network operators, and energy regulators and policy makers to address how MES could support an affordable, reliable and resilient transition towards low-carbon and even net-zero energy systems, including potential futures dominated by green electricity-hydrogen systems.

Prof. Pierluigi Mancarella
The University of Melbourne
Melbourne, Australia




SPONSORS





SDEWES INDEX
Benchmarking the performance of cities across energy, water and environment systems
related metrics presents an opportunity to trigger policy learning, action, and cooperation to bring cities closer to sustainable development.

DBG